Enhanced Coalbed Methane (ECBM) Recovery
提高煤层气（ECBM）采收

George J. Koperna Jr., Vice President
Advanced Resources International, Inc.
gkoperna@adv-res.com

Wyoming-Shanxi Province Coal Bed Methane Symposium
Laramie, Wyoming

June 21, 2016
 DISCLAIMER

The material in this Document is intended for general information only. Any use of this material in relation to any specific application should be based on independent examination and verification of its unrestricted applicability for such use and on a determination of suitability for the application by professionally qualified personnel. No license under any Advanced Resources International, Inc., patents or other proprietary interest is implied by the publication of this Document. Those making use of or relying upon the material assume all risks and liability arising from such use or reliance.
Introduction
Isotherms for Different Gases

\[CO_2 \]
\[V_m = 1128 \text{ SCF/ton} \]
\[b = 0.00489 \text{ psi}^{-1} \]

\[CH_4 \]
\[V_m = 759 \text{ SCF/ton} \]
\[b = 0.00276 \text{ psi}^{-1} \]

\[N_2 \]
\[V_m = 616 \text{ SCF/ton} \]
\[b = 0.000686 \text{ psi}^{-1} \]
CO$_2$-ECBM Recovery Mechanism

- Inject CO$_2$ into cleats.
- Due to high adsorptivity, CO$_2$ preferentially adsorbed into coal matrix.
 - Methane displaced from sorption sites.
- Efficient displacement process – slow CO$_2$ breakthrough.
- Swelling of matrix due to higher sorptive capacity for CO$_2$, reducing porosity and permeability.
CO$_2$/CH$_4$ Sorptive Capacity vs. Coal Rank

The graph shows the relationship between the CO$_2$/CH$_4$ ratio and coal rank. The data points are categorized by coal rank, with different symbols and colors representing various pressure levels: 100 psi (red), 1000 psi (purple), 2500 psi (yellow), and 5000 psi (blue). The equation $y = 1.6282x^{-0.9812}$ with $R^2 = 0.6116$ is fitted to the data, indicating a power function relationship between the CO$_2$/CH$_4$ ratio and coal rank.
N₂-ECBM Recovery Mechanism

• Inject N₂ into cleats.

• Due to lower adsorptivity, high percentage of N₂ remains free in cleats:
 – Lowers CH₄ partial pressure
 – Creates compositional disequilibrium between sorbed/free gas phases

• Methane “stripped” from coal matrix into cleat system.

• “Shrinkage” of coal, increasing porosity and permeability

• Rapid N₂ breakthrough expected.
N$_2$/CH$_4$ Sorptive Capacity vs. Coal Rank

$y = 0.4794x^{0.3785}$

$R^2 = 0.7426$

N$_2$/CH$_4$ Ratio

Coal Rank (%Vro)

- < 0.23, peat
- 0.23 - 0.36, lignite
- 0.36 - 0.47, sub-bit.
- 0.47 - 0.51, hi vol bit C
- 0.51 - 0.69, hi vol bit B
- 0.69 - 1.11, hi vol bit A
- 1.11 - 1.60, med vol bit
- > 1.60, low vol bit

- Power (2500 psi)
- 100 psi
- 2500 psi
- 5000 psi
- 1000 psi
- VL ratio
Field Pilots - San Juan Basin

Previous Study Area
Producer to Injector Conversions

Pump Canyon
Tiffany
Allison
Injector
Pilot Descriptions

现场试验描述

<table>
<thead>
<tr>
<th></th>
<th>CO₂ Injection</th>
<th>N₂ Injection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Allison Unit</td>
<td>Tiffany Unit</td>
</tr>
<tr>
<td></td>
<td>San Juan Basin, USA</td>
<td>San Juan Basin, USA</td>
</tr>
<tr>
<td>Operator</td>
<td>Burlington Resources</td>
<td>Amoco (now BP)</td>
</tr>
<tr>
<td></td>
<td>(now ConocoPhillips)</td>
<td></td>
</tr>
<tr>
<td>Start</td>
<td>1995</td>
<td>1998</td>
</tr>
<tr>
<td>Duration</td>
<td>6 ½ years continuous</td>
<td>4 years intermittent</td>
</tr>
<tr>
<td></td>
<td>injection</td>
<td>injection</td>
</tr>
<tr>
<td>No. Injection Wells</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Volume Injected</td>
<td>6.4 Bcf</td>
<td>15.0 Bcf</td>
</tr>
<tr>
<td>Depth</td>
<td>3,100 ft</td>
<td>3,000 ft</td>
</tr>
<tr>
<td>Thickness</td>
<td>43 ft</td>
<td>47 ft</td>
</tr>
<tr>
<td>Rank (％VR)</td>
<td>Med vol bit (1.33%)</td>
<td>Med vol bit (1.33%)</td>
</tr>
<tr>
<td>Permeability</td>
<td>~100 md</td>
<td>~1 md</td>
</tr>
</tbody>
</table>
Optimizing Injection Gas Composition

优化注入气体的成分
Optimizing Injected Gas Composition
优化注入的气体成分

- How can injected gas composition be optimized to maintain injectivity while sequestering CO₂ for different coal ranks?
- 怎样才能使注入气体成分进行优化，以保持在对不同等级的煤的CO₂封存时的注入性能？
- Simulation performed using COMET3.
- 使用COMET3的模拟表现
- 10yr of primary production followed by 15yr of injection.
- 由15年的注射的井的最初10年的生产
- 5-spot injection pattern, vertical wells.
- 5-spot注入模式，垂直井
- Well spacing determined based on CO₂ breakthrough occurring after 8 to 10 years of 100% CO₂ injection.
 井距测定根据8–10年100%CO₂注入后的CO₂的突破点发生

Producer

Injector
Cleat Permeability versus Coal Rank
夹板渗透性与煤级的比对

- Fracture permeability directly related to cleat frequency:
 - The higher cleat intensity, the higher permeability
 - 夹板的强度越高, 渗透性越强
 - Low permeability for low rank coal (early coalification) and high rank coal (metamorphism)
 - 低渗透, 低煤级煤 (早煤化) 和高煤级煤 (变质)
 - Highest permeability for Medium to Low-Volatile bituminous
 - 最高渗透-中煤到低的易挥发性烟煤
Pore Compressibility versus Coal Rank

孔压缩性与煤级的比对

- Compressive strength: 抗压强度
 - Capacity of a material to withstand axially-directed pushing forces
 - 材料的性能来承受直接轴向推力
 - Minimum where cleats are most developed: medium rank
 - 最小的夹板是最发达: 中阶
 - Opposite to pore compressibility (1/psi)
 - 对面孔的可压缩性
 - Maximum where cleats are most developed: medium rank
 - 最小的夹板是最发达: 中阶
 - Cp=500*10^{-6} psi^{-1} (1/2,000)
 - Minimum for low and high rank:
 - High rank Cp=250*10^{-6} psi^{-1}
 - Low rank Cp=125*10^{-6} psi^{-1}
Matrix Shrinkage versus Coal Rank

- Matrix shrinkage:
 - Low rank with early stage coalification, lower gas content, matrix less likely to swell or shrink: lower matrix compressibility -> minimum fracture permeability improvement
 - 低等级与早期煤化作用，气体含量低，不太可能膨胀或收缩的基质：基质的压缩性较低 - >最低裂缝渗透率改善

![Graphs showing matrix shrinkage versus coal rank](image)
Model Inputs

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Low Rank</th>
<th>Medium Rank</th>
<th>High Rank</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Fracture Permeability</td>
<td>1</td>
<td>100</td>
<td>10</td>
<td>mD</td>
</tr>
<tr>
<td>Fracture Permeability Anisotropy</td>
<td>1:2</td>
<td>1:2</td>
<td>1:2</td>
<td>%</td>
</tr>
<tr>
<td>Fracture Porosity</td>
<td>0.25</td>
<td>1.50</td>
<td>0.50</td>
<td>%</td>
</tr>
<tr>
<td>Pore Compressibility</td>
<td>1.25E-04</td>
<td>5.00E-04</td>
<td>2.50E-04</td>
<td>1/psia</td>
</tr>
<tr>
<td>Permeability Exponent (S&P)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Matrix Shrinkage</td>
<td>5.00E-07</td>
<td>1.00E-06</td>
<td>2.00E-06</td>
<td>1/psia</td>
</tr>
<tr>
<td>CO2/CH4 Differential Swelling Factor</td>
<td>1.25</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>N2/CH4 Differential Swelling Factor</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>
Injection Scenarios

Gas mixtures
- 100% CO₂
- 75% CO₂/25% N₂
- 50% CO₂/50% N₂
- 25% CO₂/75% N₂
- 100% N₂

Injection rate constraint: 5 MMscfd max.

Injection pressure constraint: 0.6 psia/ft maximum bottom-hole pressure.
Low Rank Coals 100% N2 Injection

 Injectivity increase due to coal shrinking under N₂ injection

 Immediate breakthrough
Low Rank Coals – Mixtures
低煤级煤—混合

1. Moderate permeability loss (-30%) during depletion (low C_p) during depletion (low C_p) 适度的渗透损失（-30%）在消耗期内

2. Drastic permeability loss (-90% from initial value) once injection starts due to coal swelling (high C_k), even with N₂ mixture 较强的渗透损失（-90%从开始的价值 一旦注射开始，因为碳的膨胀会与氮气混合）

3. Permeability increase of 35% when 100% N₂ injection starts, as matrix shrinks 当氮气注射开始，基质收缩渗透率增加到35%
Low Rank Coals – Summary

- CO₂ sequestration optimum with 100% CO₂ but lowest incremental CH₄
- CO₂封存最有利的是100%CO₂封存，但是最少的甲烷
- Best mixture at 20% N₂/ 80% CO₂
- 最好混合是20%的N₂和80%的CO₂
 - ECBM increase of 69% (from 100% CO₂ injection)
 - ECBM增加到69%（100%的CO₂的注入）
 - Minimal sequestration capacity loss of 27%
 - 最小的封存容量损失27%

- 57 MMcf incremental methane
- 600 MMcf sequestered CO₂
- above 40% N₂, no additional incremental recovery
Medium Rank Coals

1. Drastic permeability loss (-80%) during depletion (high C_p)
 极强的渗透率损失（-80%）
 在消耗期间

2. Moderate permeability loss of 10% once injection starts due to coal swelling (average C_k), followed by permeability increase (10%) due to re-pressurization and C_k
 温和的渗透率损失10%一旦注入开始，因为碳的膨胀（平均C_k），同时伴随着渗透率的增加，因为重复的压力

3. Permeability increase of 50% when N_2 injection starts, as matrix shrinks
 当氮气注入开始时，同时混合物收缩，渗透率增加到50%
Medium Rank Coals

- 50% N2/50% CO2
- 75% N2/25% CO2
- 25% N2/75% CO2
- 100% CO2
- 100% N2

Initial Conditions

Depletion

Swelling

Re-pressurization

Pressure, psia

Methane
Carbon Dioxide

Pressure
Medium Rank Coals Optimization

- Best mixture at 30% N₂/70% CO₂
 - 最好的混合是30%的氮气和70%的CO₂
- ECBM increase of 95% (from 100% CO₂ injection)
 - ECBM增加到95%（源于100%的CO₂的注入）
- Minimal sequestration capacity loss of 20%
 - 最小的封存容量损失到20%
High Rank Coals

1. Permeability gain of 20% during depletion (high C_m)
 渗透率增加到20%

2. Drastic permeability loss of 90% once injection starts due to coal swelling (average C_k)
 极强的渗透率损失90%
 一旦开始注入，因为碳的膨胀（平均C_k）

3. Permeability increase of 300% when pure N$_2$ injection starts, as matrix shrinks (highest C_m)
 当纯的N$_2$注入开始时，混合物收缩（最高C_m）渗透率增加到300%
High Rank Coals Optimization

- Best mixture at 45% N₂/55% CO₂
- 最好的混合是45%的N₂和55%的CO₂
- ECBM increase of 93% (from 100% CO₂ injection)
- ECBM增加到93%（源于100%的CO₂的注入）
- Minimal sequestration capacity loss of 20%
- 最少的封存容量损失到20%
Injection Optimization Conclusions

Low Rank Coal

<table>
<thead>
<tr>
<th></th>
<th>100% CO2</th>
<th>80% CO2/20%N2</th>
<th>75% CO2/25%N2</th>
<th>50% CO2/50%N2</th>
<th>25% CO2/75%N2</th>
<th>100% N2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incremental CH4, MMcf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>57</td>
<td>57</td>
<td>58</td>
<td>48</td>
<td>Not reached</td>
<td>48</td>
</tr>
<tr>
<td>Breakthrough time, years</td>
<td>8.4</td>
<td>8.8</td>
<td>8.7</td>
<td>9.1</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Sequestered CO2 volume @ breakthrough time, MMcf</td>
<td>670</td>
<td>599</td>
<td>586</td>
<td>478</td>
<td>330</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Medium Rank Coal

Increasing N₂ content with coal rank to achieve optimum ECBM and CO₂ sequestration.

<table>
<thead>
<tr>
<th></th>
<th>75% CO2/25%N2</th>
<th>70% CO2/30%N2</th>
<th>50% CO2/50%N2</th>
<th>25% CO2/75%N2</th>
<th>100% N2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incremental CH4, MMcf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>807</td>
<td>1,152</td>
<td>1,177</td>
<td>956</td>
<td>956</td>
</tr>
<tr>
<td>Breakthrough time, years</td>
<td>10</td>
<td>7.3</td>
<td>5.8</td>
<td>5.5</td>
<td>N/A</td>
</tr>
<tr>
<td>Sequestered CO2 volume @ breakthrough time, MMcf</td>
<td>4,424</td>
<td>4,127</td>
<td>4,014</td>
<td>2,921</td>
<td>N/A</td>
</tr>
</tbody>
</table>

High Rank Coal
Office Locations

Washington, DC
4501 Fairfax Drive, Suite 910
Arlington, VA 22203
Phone: (703) 528-8420
Fax: (703) 528-0439

Houston, TX
11931 Wickchester Ln., Suite 200
Houston, TX 77043
Phone: (281) 558-9200
Fax: (281) 558-9202

Knoxville, TN
1210 Kenesaw Ave.
Suite 1210A
Knoxville, TN 37919-7736
Phone: 865.240.3944
Phone: 865.240.3957

Advanced Resources International
www.adv-res.com