

	Area	Formation	Depth	Oil Gravity	Viscosity
Canada					
Weyburn Unit	9,900	LS/Dolo	4,660′	28º	3 cp
Joffre	6,625	Sand	4,900'	42º	1 cp
Trinidad					
Forest Reserve	500	Sand	2,000-4,200'	17-25°	10-100+ cp
Oropouche	175	Sand	2,400'	29º	5 cp
Turkey					
Bati Raman	12,890	LS	4,260'	13º	590 cp

7 September 8, 2008

JAF02770.PPT

Sources of CO ₂ for EOR/ Volume of CO ₂ Stored by EOR				
		CO ₂ Supply (MMcfd**)		
(storage location)	Source (location)	Natural	Anthropogenic	
Texas-Utah-New Mexico- Oklahoma	Geologic (Colorado-New Mexico) Gas Processing (Texas)	1,700	195/635	
Colorado-Wyoming	Gas Processing (Wyoming)	-	340	
Mississippi	Geologic (Mississippi)	700	-	
Michigan	Gas Processing Plant (Michigan)	-	15	
Oklahoma	Fertilizer Plant (Oklahoma)	-	35	
Saskatchewan	Coal Gasification (North Dakota)	-	145	
TOTAL MMcfd		2,400	730/1,170	
TOTAL MMmt/Yr		46	14/23	

JAF02770.PPT 11 September 8, 2008

"Next Generation" CO₂-EOR Technology

Reservoir modeling and selected field tests show that high oil recovery efficiencies are possible with innovative applications of CO₂-EOR.

So far, except for a handful of cases, the actual performance of CO_2 -EOR has been less than optimum due to:

- · Geologically complex reservoirs
- · Limited process control
- Insufficient CO₂ injection

JAF02770.PPT 13 September 8, 2008

U.S. Oil Resources Technically Recoverable w/"Next Generation" CO₂-EOR

Advanced Resources recently updated their study of applying "Next Generation" CO_2 -EOR to U.S. oilfields, showing significant improvements in domestic oil recovery efficiency and economic resources.

	Reservoir for CC	Favorable 02-EOR	Oil Rec	overy
State of Technology	Number	OOIP (BBbls)	Technical (MMBBbls)	Economic** (MMBBbls)
Current "Best Practices"*	1,111	430	87.1	45.0
"Next Generation"***	1,111	430	118.7	64.4

analyses and Planning, DOE/NETE-402/1512/02-07-06, Pebloally 7, 2006. http://www.neit.doe.gov/enanalyses/pubs/Storing%20CO2%20w%20EOR_FINAL.pdf.

Assuming oil price of \$70/B (real): CO2 costs (delivered to field at pressure) of \$45/metric ton (\$2.38/Mcf): investment hurdle rate (15%, real). *Preliminary results, under DOE/NETL review.

JAF02770.PPT 19 September 8, 2008

One Example of "Next Generation" CO_2 -EOR Technology: Integrating CO_2 -EOR and CO_2 Storage

Expanding CO₂ Storage Capacity: A Case Study. Large Gulf Coast oil reservoir with 340 million barrels (OOIP) in the main pay zone.

- Primary/Secondary Oil Recovery: 153 million barrels (45% of OOIP)
- Main Pay Zone:
- Net Pay - 325 feet
- Depth - 14,000 feet
 Oil Gravity - 33°API
- Initial Pressure - 6,620 psi
- Porosity - 29%
- Miscibility Pressure - 3,250 psi

Another 100 million barrels (OIP) in the underlying 130 feet of residual oil zone and an underlying saline reservoir 195 feet thick.

Theoretical CO₂ storage capacity: 2,710 Bcf (143 million tonnes)

IAF02770.PPT 20 September 8, 2008

ntegrating	CO ₂ -EOR	and CO ₂	Storage
------------	----------------------	---------------------	---------

Integrating CO₂-EOR and CO₂ Sequestration shows that much more CO₂ can be stored, making the additional oil produced "GREEN OIL"*.

	Current "Best Practices"	"Ne	ext Generati	on"
	(millions)	EOR	Seq.	Total
CO ₂ Storage (tonnes)	19	76	33	109
Storage Capacity Utilization	13%	52%	24%	76%
Oil Recovery (barrels)	64	180	-	180
% Carbon Neutral ("Green Oil")	70%	100%	-	160%

*"Green Oil" means that more CO₂ is injected and stored underground than the volume of CO₂ contained in the produced oil, once burned.

JAF02770.PPT 23 September 8, 2008

Means San Andres Unit

Reservoir Properties

Reservoir Depth, ft*	4,400
Area, acres	
- Field	14,300
- Unit	8,500
Net Pay, Ft	
- Upper San Andres	54
- Total	120(e)
Average Porosity, %	9%
Average Permeability, md	1
Initial Water Saturation	0.29
Initial Formation Volume Factor	1.04
Initial Reservoir Pressure, psig	1,850
Current Reservoir Pressure, psig	2,000
Reservoir Temperature, °F	105
Oil Gravity, ºAPI	29
Oil Viscosity, cp	6
JAF02770.PPT 29 September 8, 2008	

- The Grayburg/San Andres formations are at depths ranging from 4,200 to 4,800 feet.
- Significantly, the reservoir's oil is 29° API with a viscosity of 6 cp. The minimum miscibility pressure (MMP) is 2,000 psi.
- The reservoir has a net pay of 54 feet in the Upper San Andres Flow Unit (within a 300 foot gross interval), a porosity of 9% and a permeability of 1 to 20 md.

JAF02770.PPT 31 September 8, 2008

JAF02770.PPT 32 September 8, 2008

Salt Creek

Reservoir Properties

Reservoir Interval, ft*	6,200-6,700
Area, acres	12,100
Net Pay, Ft	100
Average Porosity, %	11
Average Permeability, md	20
Initial Water Saturation	0.19
Initial Formation Volume Factor	1.2
Initial Reservoir Pressure, psig	2,915
Current Reservoir Pressure, psig	3,150
Reservoir Temperature, °F	129
Oil Gravity, °API	39
Oil Viscosity, cp	0.53
*Includes ROZ interval from 6,500' to 6,700'.	•

JAF02770.PPT

33 September 8, 2008

- The Salt Creek Canyon Reef formation is a multi-layered reservoir, with a gross interval of 250 to 300 feet, thickening to over 600 feet in the northern portion of the main area.
- The oil is light (39° API, 0.53 cp viscosity) with a miscibility pressure of 1,800 psi.
- The field averages 100 feet of net pay, 11% porosity and 20 md permeability (with 1 to 2,000 md of permeability in individual flow units).

			Salt Creek
	S	Summary	
	•	The Salt Creek case study demonstrates that high oil recovery efficiencies, in excess of 60% of OOIP, are achievable from a multi-layer, highly heterogeneous carbonate reservoir using optimized water flooding, infill drilling and CO_2 -EOR.	
	•	The CO ₂ -EOR project is expected to recover 17% of OOIP (in addition to a high, 48% of OOIP with P/S recovery) at a gross CO ₂ to oil ratio of 13 Mcf/B and a net ratio estimated at about 5 Mcf/B.	
	•	A formal CO_2 flood tracking system (Zonal Allocation Program) and weekly team meetings are used to alter CO_2 injection volumes, improve vertical conformance and optimize oil production.	
JAF02770.PPT	36	September 8, 2008	

