Case Study #1. Barnett Shale: The Start of the Gas Shale Revolution

Prepared By:
Vello A. Kuuskraa, President
ADVANCED RESOURCES INTERNATIONAL, INC.
Arlington, VA

Prepared for:
Gas Shale Development Workshop

Sponsored by:
U.S. Department of Energy
U.S. Trade and Development Agency

Beijing, China
April 2010

Presentation Outline

1. Introduction and Status
2. Historical Perspective
3. “Game Changer” Insights
4. Overview of Exploration, Reservoir Characterization and Development
5. Assessing Improving Well Performance
6. Lessons Learned
7. Concluding Thoughts
1. Introduction and Status

The "gold standard" of gas shale development is the Barnett Shale, Fort Worth Basin of North Texas.

The Barnett Shale gas play introduced the wide-scale use of intensively stimulated (hydraulically fractured) horizontal wells which have enabled deep gas shales to become economically productive.

The Barnett Shale (Newark East field) has already produced 7 Tcf from nearly 14,000 wells.

With daily production of over 5 Bcf per day, the Barnett Shale/Newark East is today the largest natural gas field in the U.S.
Location of the Barnett Shale in North Texas

Introduction and Status

Initially, the Barnett Shale was developed with vertical wells.

Horizontal wells were introduced in 2002 and have become the dominant well design choice.

<table>
<thead>
<tr>
<th>Barnett Shale Core Area</th>
<th>Vertical* Wells</th>
<th>Horizontal Wells</th>
</tr>
</thead>
<tbody>
<tr>
<td>'90-95</td>
<td>215</td>
<td>1</td>
</tr>
<tr>
<td>'96-00</td>
<td>500</td>
<td>3</td>
</tr>
<tr>
<td>'01-03</td>
<td>2,001</td>
<td>76</td>
</tr>
<tr>
<td>'04-06</td>
<td>904</td>
<td>1,008</td>
</tr>
<tr>
<td>'07-08</td>
<td>131</td>
<td>1,810</td>
</tr>
</tbody>
</table>

*Successful wells

Source: Railroad Commission of Texas, 2010
Introduction and Status

Gas production from the Barnett Shale has grown rapidly in recent years.

<table>
<thead>
<tr>
<th>Annual Production</th>
<th>Tcf/Year</th>
<th>Bcf/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>0.4</td>
<td>1.0</td>
</tr>
<tr>
<td>2005</td>
<td>0.5</td>
<td>1.4</td>
</tr>
<tr>
<td>2006</td>
<td>0.7</td>
<td>2.0</td>
</tr>
<tr>
<td>2007</td>
<td>1.1</td>
<td>3.0</td>
</tr>
<tr>
<td>2008</td>
<td>1.6</td>
<td>4.4</td>
</tr>
<tr>
<td>2009</td>
<td>1.8</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Additional production is from associated gas from Barnett Shale oil wells.

Reservoir Properties: Barnett Shale

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth</td>
<td>7,500’</td>
</tr>
<tr>
<td>Gross Thickness</td>
<td>430’</td>
</tr>
<tr>
<td>Net Thickness</td>
<td>390’</td>
</tr>
<tr>
<td>Porosity</td>
<td>6%</td>
</tr>
<tr>
<td>Pressure</td>
<td>3,500 psi</td>
</tr>
<tr>
<td>Total Gas In-Place (Bcf/mi²)</td>
<td>±150</td>
</tr>
<tr>
<td>Adsorbed Gas (Bcf/mi²)</td>
<td>60</td>
</tr>
<tr>
<td>“Free” (Porosity) Gas (Bcf/mi²)</td>
<td>90</td>
</tr>
</tbody>
</table>

The Barnett Shale was the first deep gas shale (7,000 to 8,000 feet deep) to be commercially developed.

The gas shale is in two intervals, a thick, rich Lower Barnett and a leaner Upper Barnett.

The gas in-place, in the Core Area is ±150 Bcf/mi², with about 40% from adsorbed gas and 60% from “free” gas.
Introduction and Status

Geologic and reservoir assessments are used to target horizontal wells into the rich, brittle interval of the shale.

Source: Chesapeake Energy

2. Historical Perspective
Historical Perspective

The U.S has been producing natural gas from shallow, organically rich fractured shales for many decades, including:

- The underpressured Huron (Devonian) Shale, Appalachian Basin.
- The “wet” Antrim Shale, Michigan Basin

Natural fractures were considered to be essential for flow rates. Adsorbed gas was the dominant gas storage mechanism. The clays in “dry” shales were thought to be water sensitive.

These shallow, 1,000 to 3,000 feet, shales were developed with low cost vertical wells and small fracs.

Gas production rates were modest but long lasting. Typical gas rates were 100 to 200 Mcf per day per well, with reserves of 0.25 Bcf to 0.5 Bcf per well.

Eastern U.S. Gas Shale Basins

Source: Advanced Resources International
Historical Perspective

Deep gas shales, such as the Marcellus Shale in the Appalachian Basin were known to exist. However, except for areas with intense natural fractures, the deep shales (much like deep coals) were considered to have essentially no permeability.

The early drilling results from the Barnett Shale, including Mitchell Energy’s 1981 discovery well - - the C.W. Slay No. 1, tended to validate the conventional wisdom of “essentially no permeability” in deep shales.

- The C.W. Slay #1 well had a modest initial production rate of 120 Mcfd after cleanup.
- The initial vertically drilled wells had low EUR’s of about 0.4 Bcf/well, not much different than the shallow (and much cheaper to drill) Huron and Antrim Shale wells.

For the next twenty years, the Barnett Shale operator, Mitchell Energy, continued experimenting with larger fracture designs, more rigorous reservoir characterization and lower cost well drilling and stimulation.

This formal process of “learning” helped double the productivity of the Barnett Shale vertical wells, making the play economic.

The recognition that gas shales contained a major second gas storage mechanism (porosity) and that one could create the essential flow paths in a deep shale reservoir with intensively fractured horizontal wells “changed the game”.

But, I am getting ahead of myself.
3. “Game Changer” Insights

“Game Changer” Insights and Actions

A series of actions and insights “changed the game” for the Barnett Shale.

The 1998 Oil and Gas Journal article (Kuuskraa, et al, 1998) provided a very different interpretation of the Barnett Shale than accepted as the “conventional wisdom”. The article stated that:

• In addition to adsorbed gas, porosity is a key gas storage mechanism in deep shales.
• The vertical wells were draining only a small area, 10 to 30 acres, not large 320 acre areas.
• The gas resource concentration was rich and the size of the Barnett Shale play was large, at least 10 Tcf.

Mitchell Energy recognized that higher injected energy was beneficial and that the Barnett Shale was not water sensitive. It began to use lower cost, large volume “slick water” low proppant concentration fracs.
Game Changing Insights and Actions

The final “game changing” insights came from refracturing the older, vertically drilled Barnett Shale wells.

- Recognized that the second (or third refracture) was contacting additional shale reservoir.
- The refracs of older wells increased gas reserves to over 2 Bcf/well. (Subsequent refracs of more modern, more efficiently completed wells added about 0.5 to 0.6 Bcf per refrac.)

This provided the evidence that it was possible to create sufficiently permeable flow paths in deep gas shales.

Refracturing Previously Stimulated Shale Wells

Barnett Shale/Newark East Field

Devon Denton Creek Trading Co. No. 1 Well

Cum = 2.2 Bcf EUR = 2.9 Bcf

Johnson No. 2 Well

Cum = 1.8 Bcf EUR = 2.9 Bcf
Performance of Refractured Barnett Shale Wells*
(1999-2000 Program)

<table>
<thead>
<tr>
<th>Well Name</th>
<th>Date</th>
<th>Original Stimulation (Bcf)</th>
<th>After Refracture (Bcf)</th>
<th>Increased Recovery (Bcf)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cum Recovery**</td>
<td>EUR</td>
<td>Cum Recovery***</td>
</tr>
<tr>
<td>Denton Creek #1</td>
<td>1992</td>
<td>0.8</td>
<td>1.0</td>
<td>2.2</td>
</tr>
<tr>
<td>Talley #1</td>
<td>1993</td>
<td>0.4</td>
<td>0.5</td>
<td>2.6</td>
</tr>
<tr>
<td>Logan #2</td>
<td>1991</td>
<td>0.4</td>
<td>0.6</td>
<td>2.2</td>
</tr>
<tr>
<td>Ted Morris #1</td>
<td>1992</td>
<td>0.6</td>
<td>0.8</td>
<td>2.1</td>
</tr>
<tr>
<td>Johnson #2</td>
<td>1984</td>
<td>0.3</td>
<td>0.4</td>
<td>1.8</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>0.7</td>
<td>3.2</td>
<td>2.5</td>
</tr>
</tbody>
</table>

*Based on analysis by Advanced Resources.
**Cumulative gas recovery at date of refrac.
***Cumulative gas recovery as of April 2008.
4. Overview of Exploration, Reservoir Characterization and Development

Bend Arch - Fort Worth Basin: Stratigraphic Column

- Mississippian-age, organic-rich shale,
- Unconformably overlies Ordovician Ellenburger Group limestone,
- Overlain by Pennsylvanian Marble Falls Fm.
Cross-sectional view of the Barnett Shale shows Core Area in Wise & Parker Counties has thicker, deeper Barnett Shale. Thick Viola Simpson frac barrier protects against the wet karstic Ellenburger limestone. The Barnett Shale becomes thinner and shallower into Tiers 1 and 2, while Viola frac barrier pinches out.

More Rigorous Definition of Gas In-Place

In 1999, a major effort was launched to define the resource concentration of the Barnett Shale:

- Two Upper and Lower Barnett conventional cores of 90’ and 60’
- Two 10’ pressure cores in Lower Barnett

This established a much larger gas in-place and significantly changed the development strategy for the Barnett Shale.

<table>
<thead>
<tr>
<th></th>
<th>Original Values</th>
<th>Updated Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pay Interval</td>
<td>Lower Barnett Only</td>
<td>Upper and Lower Barnett</td>
</tr>
<tr>
<td>Porosity</td>
<td>3.7%</td>
<td>4.5% to 6%</td>
</tr>
<tr>
<td>Water Saturation</td>
<td>50 to 60%</td>
<td>25%</td>
</tr>
<tr>
<td>Adsorbed Gas</td>
<td>Fixed</td>
<td>Related to TOC</td>
</tr>
<tr>
<td>GIP (Bcf/mi²)</td>
<td>53</td>
<td>145</td>
</tr>
</tbody>
</table>
Mapping of Barnett Shale Thickness

- Barnett Shale is thickest in the deep Core Area (up to 900 feet thick).
- About 200 ft thick in Parker and Hood Counties (Tier 1).
- Less than 100 ft thick further west.
- Shale thickness correlates with gas in place and per-well recoveries.

More Rigorous Definition of Gas In-Place

- **Free Gas.** The more rigorous characterization of the Barnett Shale increased gas filled porosity (free gas) by two-fold.
- **Adsorbed Gas.** The pressure core showed that gas stored by adsorption was 120 scf/ton in the rich (5.2% TOC) Lower Barnett compared to an earlier estimate of 42 scf/ton.
Better Understanding of Thermal Maturity

Initially, due to less favorable gas production from lower thermal maturity areas, development was restricted to areas with vitrinite reflectance (Ro) values (cuttings-based) of 1.4 or greater, limiting the prospective areas.

Subsequent assessments showed that the Ro value in cores was typically 0.2 greater than in cutting, helping expand the prospective area.

Better understanding of the maturation of the Barnett Shale helped lower the Ro cuttoff value to 1.15 to 1.25 (from core) greatly increasing the prospective area.

Further analysis also showed that many of the early well failures in the lower Ro areas were due to lack of fracture containment rather than insufficient thermal maturity.

Barnett Shale Thermal Maturity

- Maximum thermal maturity in Core Area (Ro = 1.5%).
- Barnett Shale becomes oil-prone below Ro = 1.15%.
- Thermal maturity declines to the north and west.
- Efforts are underway in the thick, lower Ro areas to the north to develop a combination shale oil and shale gas play.
Barnett Shale Play Boundaries

- Well productivity changes rapidly due to geology.
- Core Area is deeper, thicker and higher maturity with EURs of over 2 Bcf/well.
- Extension Area wells are thinner, shallower and lower maturity with EUR’s of less than 1.5 Bcf/well.

5. Assessing Improving Well Performance
Assessment of Well Performance

Early assessment of Barnett Shale well performance, using a two layer reservoir model (including a thin, high permeability zone as the flow path and a thick, essentially impermeable, shale interval), established the “mind-set” that the hydraulic fractures were long (1,200 feet) and the drainage area was large (320 acres/well).

Reassessment of Barnett Shale well performance established that actual fracture lengths were much shorter on the order of 200 feet, and the drainage area per well was limited to 15 to 30 acres, leading operators to reconsider their well spacing strategies.

Initial Barnett Shale Well Performance

The initial vertical wells, drilled into the Barnett Shale during 1985 to 1990, provided only modest reserves of 0.4 to 0.5 Bcf/well.

The introduction of high volume “slick water”, low proppant concentration stimulations, plus adding the Upper Shale interval, increased reserves to 0.8 to 1.0 Bcf/well.

<table>
<thead>
<tr>
<th>Well</th>
<th>Completion Interval, ft</th>
<th>Cum. Prod., Bcf*</th>
<th>EUR, Bcf</th>
<th>Drainage, Acres</th>
<th>Fracture wing, ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Initial 74 wells (1985-90)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type well</td>
<td>1</td>
<td>7,558-7,733</td>
<td>0.32</td>
<td>0.39</td>
<td>11</td>
</tr>
<tr>
<td>Type well</td>
<td>2</td>
<td>6,843-7,133</td>
<td>0.38</td>
<td>0.51</td>
<td>13</td>
</tr>
<tr>
<td>Special well</td>
<td>3</td>
<td>6,884-7,080</td>
<td>0.78</td>
<td>1.16</td>
<td>30</td>
</tr>
<tr>
<td>B. Subsequent 217 well (1991-96)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type well</td>
<td>4</td>
<td>7,300-7,528</td>
<td>0.62</td>
<td>0.94</td>
<td>21</td>
</tr>
<tr>
<td>Type well</td>
<td>7</td>
<td>7,514-7,746</td>
<td>0.33</td>
<td>0.83</td>
<td>14</td>
</tr>
</tbody>
</table>

Source: Advanced Resources, 1998
*As of mid-1997
Barnett Shale Core Area: Modern Day Well Performance

The introduction of horizontal wells increased well performance by about three-fold. Recent well performance has been declining as operators are “stepping out” into lower quality portions of the maturing Core Area.

<table>
<thead>
<tr>
<th></th>
<th>Successful Vertical Wells</th>
<th>Successful Horizontal Wells</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(# Wells)</td>
<td>(Bcf/w)</td>
</tr>
<tr>
<td>1990-1995</td>
<td>215</td>
<td>2.3*</td>
</tr>
<tr>
<td>1996-2000</td>
<td>500</td>
<td>1.7*</td>
</tr>
<tr>
<td>2001-2003</td>
<td>2,001</td>
<td>1.3</td>
</tr>
<tr>
<td>2004-2006</td>
<td>904</td>
<td>1.0</td>
</tr>
<tr>
<td>2007-2008</td>
<td>131</td>
<td>0.6</td>
</tr>
</tbody>
</table>

*Includes improved performance from refracs.

Lower Damage, More Effective Horizontal Well Completions Provide Higher Reserves Per Well

Initial Barnett Shale Well Completions

Cased, Cemented, Perforated and Isolated Horizontal Wellbore

Latest Barnett Shale Well Completions

A 12 Stage Open Hole Completion System Using Open Hole Packers for Mechanical Diversion

*Typically 10,000 barrels of water and 400,000 pounds of sand per stage
Case Study #1: Barnett Shale: The Start of the Gas Shale Revolution

Horizontal Well Production “Type Curve”

Barnett Core Area Hz Wells (2001-2006)

6. Lessons Learned
Case Study #1. Barnett Shale: The Start of the Gas Shale Revolution

Lesson #1. High-Quality Resource Areas Provide the Essential Foundation for Success

The Core Area of the Barnett Shale with 150 Bcf/mi² starts out with an inherent advantage over the extension areas with much leaner 50 Bcf/mi² resource concentration.

Similar high and low resource concentration areas exist in each of the gas shale plays we have evaluated.

Lesson #2. Even in High-Quality Resource Areas, Individual Well Performance Will Vary Greatly

A detailed look at over 1,000 horizontal wells drilled between 2001 and 2006 in the Core Area shows considerable variations in well performance:

- The statistical average well in the Core Area has an EUR of 2.8 Bcf.
- The best 10% of the wells in the Core Area have EUR/well of over 7 Bcf.
- The lowest 40% of the wells in the Core Area have EUR/well of only 1.2 Bcf.
- A small number, 43 wells (4%) are “dry” (non-productive)
Lesson #3. 3D Seismic is Widely Used in the Barnett Shale to Avoid Faults and Karsts

Operators have achieved success with refracturing lower performing shale wells located in otherwise geologically favorable areas.

The Pittard #6H horizontal well was refracced in late 2007, more than doubling its gas production rate.

Lesson #4. Horizontal Barnett Shale Wells May Also Benefit from Refracs
Lesson #5. Directional and Horizontal Drilling Is Key to Urban Barnett Shale Development

The Barnett Shale underlies much of the Dallas/Ft. Worth area.

Carrizo O&G drilling 24 hz laterals from a single pad at UT Arlington. Royalties worth ~$105 MM @ $5/Mcf.

Lesson #6. We Have Not Yet Solved the Issue of Optimum Barnett Shale Well Spacing

Given the rich concentration of gas in-place in the Barnett Shale, operators are still examining the topic of optimum well spacing.

- The most common field design is to drill two 2,500’ laterals per section, spaced 1,320’ apart (80 acre/well).
- Some operators are drilling one longer lateral of 3,500’ to 4,000’ feet per section, spaced about 1,000’ apart (80 acre/well).
- Currently, 80 acre/well spacing is providing 15 to 20% recovery of GIP.
- Closer well spacings of 40 acres/well could increase recovery of GIP by 10 to 15% but at lower incremental reserves per well.
- Pilot efforts are underway testing well spacing of 20 acres/well to raise overall gas recovery to over 50% of GIP.
Optimum Well Spacing (Operator A)

Alternative Well Spacing Designs

Performance of Closer Spaced Wells

- 80 acres per well (1,000’ apart)
 - 187 wells online (2.5 Bcf per well)
- 40 acres per well (500’ apart)
 - 57 wells online (2.3 Bcf per well)
- 20 acres per well under study

Source: Devon Energy (2009)

Optimum Well Spacing (Operator B)

- Initial development on 80 acre well spacing will recover only a modest (19%) fraction of gas in-place.
- Downs spacing to 40- and 20-acre would increase the recovery of gas in-place to over 50%, although well performance would decline.

Source: XTO (2009)
6. Concluding Thoughts

The Barnett Shale opened up a new class of natural gas resources by demonstrating that:

- Shale gas source rocks can have high gas storage capacity – 100 to 200 Bcfe / mi².
- Extremely low permeability shales can be unlocked using horizontal drilling and massive hydraulic stimulation.

These breakthroughs have enabled the Barnett Shale to become the largest natural gas field in the U.S.
6. Concluding Thoughts

Today's active pursuit of deep gas shales - - the Fayetteville, Marcellus, Haynesville and Horn River shales in North America and the numerous gas shales in China and other countries - - could make gas shales the largest undeveloped natural gas resource in the world.